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Invertibility of dynamical systems in granular phase space
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~Received 26 June 1998!

The ~non!invertibility of iterated dynamical systems is not necessarily preserved under computer discretiza-
tion. This is shown for linear congruential generators and the circle map. For the latter, the loss of invertibility
becomes worse for finer discretization steps.
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Computer simulations~experimental mathematics! have
been a crucial tool in the understanding of new phenom
in nonlinear dynamics and complex systems. Classic
amples are the Mandelbrot set and the Feigenbaum pe
doubling route to chaos. It is not surprising, then, that
effects of computer discretization on dynamics, especi
chaotic, have been the subject of much study in recent y
for both conservative@1# and dissipative@2,3# systems. An
implicit inference of the studies so far has been that fin
state arithmetic preserves the~non!invertibility of the dy-
namics. Invertibility occurs when only one trajectory leads
each state, this is, each state has exactly one preimag
good representative discussion for the Chirikov stand
map, which is conservative and also invertible, is given
Refs. @1~a!# and @4#: in the discrete representation, regul
Kol’mogorov-Arnol’d-Moser surfaces and stochastic regio
are well mimicked respectively, by one short and seve
longer cycles with a distribution of lengths similar to that
a random mapping of integers.

In this paper we show examples where first invertibil
and then its opposite are not preserved in granular~dis-
cretized! phase space. Systems which are noninvertible in
continuous description can be made invertible upon discr
zation; this has been turned into an art form in the rand
number generator~RNG! literature, in which long limit
cycles without transients are desirable@5#. After illustrating
this, we will summarize results of a study of the circle ma

un115un1V2~K/2p!sin~2pun!, ~1!

of interest in physics because of its mode-locking behav
and interesting transitions from quasiperiodicity to cha
@6#. This map is invertible in the continuous case as long
K,1 @4#, but becomes noninvertible upon discretization
the space 0<u<1. While in the case of the RNG invertibil
ity only appears with special parameter choices, in the c
of the circle map the loss of invertibility becomes worse
the discretization step gets smaller, contrary to what
would expect.

*Author to whom correspondence should be addressed. Electr
address: p@faoa.uniandes.edu.co
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We begin by discussing known features of the discretiz
representation of a dynamical systemxn115 f (xn), wherex
can denote a vector andn is the~integer! time step@7#. This
is usually achieved by roundoff or truncation@8# ~what a
computer would do! of a continuous dynamical system
which essentially turns it into an integer map. Since the va
ablex can only have a finite number (m) of states, and the
function f (xn) is deterministic, an initial condition can b
iterated at mostm times before one of the values repea
This, known as the pigeonhole principle, causes the app
ance of limit cycles and possibly transients, the former u
ally corresponding to unstable cycles of the continuous m
which are made stable by discretization, and the latter a
ciated with noninvertible dynamics. Transients are sequen

ic FIG. 1. ~a! The continuous mapxn1155xn13, modulo 8, with
~b! its expected de Bruijn diagram.
7987 © 1998 The American Physical Society
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of states which lead to fixed points or limit cycles, but cann
be revisited. Examples are given in Ref.@2#, and in Fig. 3
below. The structure of phase space is most usefully vis
ized in terms of directed graphs or de Bruijn diagrams, s
as Figs. 1~b!, 2~b!, and 3 in this paper.

First, we consider the mapxn115axn1c, modulo m,
where the meaning ofm is as given above. This is the wel
known linear congruential RNG. For purposes of illustrati
we choose the parameter valuesa55, c53. Figure 1~a! cor-
responds to the continuous map, where we clearly see
each iterate has five preimages: the map is noninverti
This should correspond to a de Bruijn diagram as shown
Fig. 1~b!: the trees mimic the five-to-one corresponden
and end in fixed points or limit cycles as discussed abo
However, under judicious choices ofa,c,m @9#, the discrete
map becomes invertible: one choice ism58. We show the
discretization in Fig. 2~a!: each value only has one preimag
and moreover, the de Bruijn diagram consists of only o
maximal cycle of lengthm, shown in Fig. 2~b!. While the
number-theoretical properties of this map are well know
apparently it has not been discussed previously in term
discrete dynamical systems and de Bruijn diagrams. We n
that RNGs have been the subject of recent important stu
in the physics literature@10#.

The situation is more serious for the circle map; we d
cuss specifically roundoff, although the conclusions also

FIG. 2. ~a! The linear congruential generatorxn1155xn13
modulo 8, with~b! its de Bruijn diagram. The mapping of Fig. 1 ha
become invertible.
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ply to truncation with minor algebraic changes@8#. We con-
sider this map in the invertible range ofK as specified above
The trouble with the circle map occurs near the extreme v
ues u;0, u;1, and with K;1, which gives slopes
dun11 /dun;12K;0. Under this condition, noninvertible
many-to-one mappings are very likely under the effects
discretization. We did a random sampling of fifty combin
tions in V-K parameter space, for 32<m,2048, and found
only three instances of invertible behavior, all of them f
K<0.01. Only one of them consisted of a single limit cyc
the other two of several small limit cycles. A study of d
Bruijn diagrams form532 confirms the expectation tha
there are more many-to-one mappings of states for large
for small values ofK, resulting in noninvertible behavior an
the existence of many limit cycles with transients. An e
ample of noninvertible behavior is given in Fig. 3, whe
several states lead to state 6. Transients leading to this
from outside the period-5 limit cycle cannot be revisited.

The conditions for invertibility correspond to limit cycle
in which the difference between consecutive iterates isj /m,

FIG. 3. Example of noninvertible discretized circle map. Labek
corresponds to stateu5k/16. Parameter values areV50.404 004,
K50.967.

FIG. 4. Regions of invertibility for the circle map inV-K pa-
rameter space form516, with roundoff. Note that forp/m<K
<1 the system cannot be invertible. The vertical axis is not sho
to scale.
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modulo 1, withj integer. If j is a relative prime ofm, only
one cycle of maximal length will occur, otherwise there w
be several cycles. Combining Eq.~1! with the definition of
footnote 8, one obtains conditions forV andK that guarantee
no transients. We obtainV5( j 1e)/m, with ueu,1/2, which
also requiresK,p(122ueu)/m. Figure 4 shows the region
that satisfy both constraints for invertibility form516
~shaded areas!. Only the triangles with the base centered
odd multiples ofV51/m correspond to single limit cycles
and hence to ergodic behavior. For truncation the diagram
the same, except that the triangles are shifted horizontally
1/2m. For other values ofm there will also be triangles with
bases centered at multiples of 1/m, and with vertices atK
5p/m; in other words, the area of parameter space in wh
the system is invertible goes to zero as the discretization
,
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1/m becomes finer. These results have been confirmed
detailed numerical experiments near the boundaries of Fig

In this paper we have shown a surprising feature of co
puter discretization of nonlinear maps: invertibility, one
the most fundamental properties of a dynamical system
not necessarily preserved. This feature is of particular c
cern for the circle map~and generally for invertible map
with derivatives near zero! in that invertibility actually be-
comes more difficult to achieve with smaller discretizati
steps. Finally, the relation between this work and other
cent studies of reversibility and symbolic dynamics@11# is
under current study.

We are thankful for the support of the IDB and Colcie
cias ~Contract No. CT-259-96!, and for discussions with the
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