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Invertibility of dynamical systems in granular phase space
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The (non)invertibility of iterated dynamical systems is not necessarily preserved under computer discretiza-
tion. This is shown for linear congruential generators and the circle map. For the latter, the loss of invertibility
becomes worse for finer discretization steps.
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Computer simulationgexperimental mathematicdave We begin by discussing known features of the discretized
been a crucial tool in the understanding of new phenomeneepresentation of a dynamical system, ;= f(x,), wherex
in nonlinear dynamics and complex systems. Classic exean denote a vector andis the (intege)p time step[7]. This
amples are the Mandelbrot set and the Feigenbaum periois usually achieved by roundoff or truncati¢B] (what a
doubling route to chaos. It is not surprising, then, that thecomputer would dp of a continuous dynamical system,
effects of computer discretization on dynamics, especiallywhich essentially turns it into an integer map. Since the vari-
chaotic, have been the subject of much study in recent yeasble x can only have a finite numbem) of states, and the
for both conservativg¢1] and dissipativd2,3] systems. An  function f(x,) is deterministic, an initial condition can be
implicit inference of the studies so far has been that finiteiterated at mostn times before one of the values repeats.
state arithmetic preserves ttiponjinvertibility of the dy-  This, known as the pigeonhole principle, causes the appear-
namics. Invertibility occurs when only one trajectory leads toance of limit cycles and possibly transients, the former usu-
each state, this is, each state has exactly one preimage. ally corresponding to unstable cycles of the continuous map
good representative discussion for the Chirikov standargvhich are made stable by discretization, and the latter asso-
map, which is conservative and also invertible, is given inciated with noninvertible dynamics. Transients are sequences
Refs.[1(a)] and[4]: in the discrete representation, regular

Kol’'mogorov-Arnol’d-Moser surfaces and stochastic regions 8

are well mimicked respectively, by one short and several 7 -

longer cycles with a distribution of lengths similar to that of

a random mapping of integers. 6
In this paper we show examples where first invertibility 5

and then its opposite are not preserved in gran(its-

cretized phase space. Systems which are noninvertible in the 4 -

continuous description can be made invertible upon discreti- Xn+1 3-

zation; this has been turned into an art form in the random

number generatofRNG) literature, in which long limit 24

cycles without transients are desiraptd. After illustrating 1]

this, we will summarize results of a study of the circle map, 0

0. 1= 0.+ Q— (KI2m)sin(276,), (1) @) X

of interest in physics because of its mode-locking behavior
and interesting transitions from quasiperiodicity to chaos
[6]. This map is invertible in the continuous case as long as
K<1 [4], but becomes noninvertible upon discretization of
the space & 6<1. While in the case of the RNG invertibil-

ity only appears with special parameter choices, in the case
of the circle map the loss of invertibility becomes worse as
the discretization step gets smaller, contrary to what one
would expect.

(b)
* Author to whom correspondence should be addressed. Electronic FIG. 1. (a) The continuous mag,,. ;=5x,+ 3, modulo 8, with
address: p@faoa.uniandes.edu.co (b) its expected de Bruijn diagram.
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FIG. 3. Example of noninvertible discretized circle map. Ldbel
corresponds to staté=k/16. Parameter values afe=0.404 004,
K=0.967.

ply to truncation with minor algebraic changel. We con-
sider this map in the invertible range kifas specified above.
The trouble with the circle map occurs near the extreme val-
ues ~0, #~1, and with K~1, which gives slopes
dé,.,/d6,~1—K~0. Under this condition, noninvertible
many-to-one mappings are very likely under the effects of
discretization. We did a random sampling of fifty combina-
tions in()-K parameter space, for 3an<<2048, and found
only three instances of invertible behavior, all of them for
K=0.01. Only one of them consisted of a single limit cycle,
(b) the other two of several small limit cycles. A study of de
Bruijn diagrams form=32 confirms the expectation that
there are more many-to-one mappings of states for large than
for small values oK, resulting in noninvertible behavior and
the existence of many limit cycles with transients. An ex-
of states which lead to fixed points or limit cycles, but cannotample of noninvertible behavior is given in Fig. 3, where
be revisited. Examples are given in RE2], and in Fig. 3  several states lead to state 6. Transients leading to this state
below. The structure of phase space is most usefully visuakrom outside the period-5 limit cycle cannot be revisited.
ized in terms of directed graphs or de Bruijn diagrams, such The conditions for invertibility correspond to limit cycles

FIG. 2. (@) The linear congruential generatay,,;=5x,+3
modulo 8, with(b) its de Bruijn diagram. The mapping of Fig. 1 has
become invertible.

as Figs. 1b), 2(b), and 3 in this paper. in which the difference between consecutive iteratggis,
First, we consider the mag,,;=ax,+c, modulo m,
where the meaning ah is as given above. This is the well- 1

known linear congruential RNG. For purposes of illustration

we choose the parameter values 5, c=3. Figure 1a) cor-

responds to the continuous map, where we clearly see that

each iterate has five preimages: the map is noninvertible.

This should correspond to a de Bruijn diagram as shown in

Fig. 1(b): the trees mimic the five-to-one correspondence,

and end in fixed points or limit cycles as discussed above. K

However, under judicious choices afc,m [9], the discrete o

map becomes invertible: one choicenis=8. We show the

discretization in Fig. @): each value only has one preimage,

and moreover, the de Bruijn diagram consists of only one

maximal cycle of lengttm, shown in Fig. 2b). While the

number-theoretical properties of this map are well known, 0 P L L L L L R L AL L B

apparently it has not been discussed previously in terms of mQ

discrete dynamical systems and de Bruijn diagrams. We note

that RNGs have been the subject of recent important studies FIG. 4. Regions of invertibility for the circle map i2-K pa-

in the physics literaturgl10]. rameter space fom=16, with roundoff. Note that form/m=<K
The situation is more serious for the circle map; we dis-<1 the system cannot be invertible. The vertical axis is not shown

cuss specifically roundoff, although the conclusions also apto scale.
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modulo 1, withj integer. Ifj is a relative prime oim, only  1/m becomes finer. These results have been confirmed by
one cycle of maximal length will occur, otherwise there will detailed numerical experiments near the boundaries of Fig. 4.
be several cycles. Combining E(L) with the definition of In this paper we have shown a surprising feature of com-
footnote 8, one obtains conditions fArandK that guarantee puter discretization of nonlinear maps: invertibility, one of
no transients. We obtaifl = (j + €)/m, with | e|]<1/2, which the most fundamental properties of a dynamical system, is
also require < m(1— 2| e|)/m. Figure 4 shows the regions NOt necessarily preserved. This feature is of particular con-
that satisfy both constraints for invertibility fom=16  cern for the circle magand generally for invertible maps

(shaded areasOnly the triangles with the base centered at'With derivatives near zejan that invertibility actually be-
odd multiples ofQ = 1/m correspond to single limit cycles, comes more difficult to achieve with §maller discretization
and hence to ergodic behavior. For truncation the diagram ‘%fnﬁsgtﬁg;ggyé)ftTg\,g;gﬁirt' baert]vc\j/esnmtgéslic\/vgrl:];;([jd;]tr;gr re-
the same, except that the triangles are shifted horizontally ander current study y Y y

1/2m. For other values ofn there will also be triangles with '

bases centered at multiples ofrl/and with vertices aK We are thankful for the support of the IDB and Colcien-
=r/m; in other words, the area of parameter space in whicltias (Contract No. CT-259-96 and for discussions with the
the system is invertible goes to zero as the discretization stedpte At Compagner.
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